Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert−/− mice

نویسندگان

  • Q-G Zhou
  • H-Y Wu
  • H Zhou
  • M-Y Liu
  • H-W Lee
  • X Liu
  • S Devkota
  • E J Ro
  • D-Y Zhu
  • H Suh
چکیده

The role of telomerase reverse transcriptase (TERT) has been extensively investigated in the contexts of aging and cancer. Interestingly, Tert(-/-) mice exhibit additional but unexpected aggressive and depressive behaviors, implying the potential involvement of TERT function in mood control. Our conditional rescue experiments revealed that the depressive and aggressive behaviors of Tert(-/-) mice originate from Tert deficiency in two distinct brain structures. Reactivation of Tert in the hippocampus was sufficient to normalize the depressive but not the aggressive behaviors of Tert(-/-) mice. Conversely, re-expression of Tert in the medial prefrontal cortex (mPFC) reversed the aggressive but not the depressive behavior of Tert(-/-) mice. Mechanistically, decreased serotonergic signaling and increased nitric oxide (NO) transmission in the hippocampus transduced Tert deficiency into depression as evidenced by our observation that the infusion of a pharmacological agonist for serotonin receptor 1a (5-HTR1A) and a selective antagonist for neuronal NO synthase into the hippocampus successfully normalized the depressive behavior of Tert(-/-) mice. In addition, increased serotonergic transmission by the 5-HTR1A agonist in the mPFC was sufficient to rescue the aggressive behavior of Tert(-/-) mice. Thus, our studies revealed a novel function of TERT in the pathology of depression and aggression in a brain structure-specific manner, providing direct evidence for the contribution of TERT to emotional control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

P2: Neocortex and Memory

The human prefrontal cortex differs from all other mammals: the seat of complex cognition, abstract thinking, planning and future forecasting, and behavioral inhibition. Using our prefrontal cortex is a significant energy drain on the body, so despite its impressive capabilities, it’s daily capacity is limited. Some researchers estimate a mere 2-3 hours per day of activity depletes the pr...

متن کامل

The Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats

Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...

متن کامل

The effect of Aerobic Training on Serotonin and Tryptophan Hydroxylase of Prefrontal Cortex in type 2 Diabetic Rats

Background & Aims: Type 2 diabetes (T2D) is a self-management disease and depression is a common problem related to it. One of the causes of depression is serotonin (5-HT) depleted. The enzyme tryptophan hydroxylase (TPH) is known as limiting enzyme in the production of 5-HT in the brain. Aerobic exercise also has proven benefits in treating and reducing the incidence of chronic diseases such a...

متن کامل

O7: Limbic System and its Disorders (Focus on Emotions Including Anxiety)

The cerebral cortex can be functionally subdivided into primary sensory-motor, unimodal association, heteromodal association, paralimbic and limbic regions. Broca was the first who described limbic lobe in 1874, as a ring of gray matter, lying between the diencephalon and more lateral neocortex on the medial surface of the hemisphers. It locates outside of the corpus callosum and consists of su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016